PyPDE

Dec 18, 2019

Contents:

1 Installation 3
1.1 From PyPl e e e 3
1.2 Fromsource i i e e e e e e e e 3
2 Background 5
3 Core Functionality 7
4 Example PDEs 11
4.1 3D Navier-Stokes e e e e e e e e e 11
42 2D Reactive Buler e e 11
4.3 3D Godunov-Romenski e e 12
5 Example Code 13
5.1 Reactive Euler (1D, hyperbolic, SO) e 13
5.2 Navier-Stokes (2D, parabolic) o e e e e e e e e e e 15
Index 19

PyPDE

A Python library for solving any system of hyperbolic or parabolic Partial Differential Equations. The PDEs can have
stiff source terms and non-conservative components.

Key Features:
* Any first or second order system of PDEs
* Your fluxes and sources are written in Python for ease
* Any number of spatial dimensions
* Arbitrary order of accuracy
¢ C++ under the hood for speed
* Based on the ADER-WENO method
Please feel free to message me with questions/suggestions: jackson.haran@gmail.com

Quickstart: check out the core functionality and example code.

Contents: 1

mailto:jackson.haran@gmail.com

PyPDE

2 Contents:

CHAPTER 1

Installation

1.1 From PyPI

There are pre-built wheels for Linux, MacOS, and Windows (Python 3.6, 3.7, 3.8) avaiable on PyPI. To install them
from your system, run:

pip install pypde

1.2 From source

Ensure you have a C++ compiler installed (e.g. Clang/g++ on Linux/MacOS, or MSVC on Windows). Then run:

’$ git clone git://github.com/haranjackson/PyPDE.git

Then run the following commands:

$ cd PyPDE
$ pip install .

PyPDE

4 Chapter 1. Installation

CHAPTER 2

Background

We can solve any system of PDEs of the form:

QL 0k (U0 QY Pp (29 09)

ot 0 " Oz, oz, Oxy’ " Oy
FBUQ G+t Bl (@ g
5@
or, more succinctly:
0Q
%2 VP (QVQ) +B(Q)-VQ=8(Q)

See examples of such systems .

If you give the values of Q at time ¢ = 0 on a rectangular domain in R", then PyPDE will calculate Q on the domain
at a later time ¢ that you specify.

The boundary conditions at the edges of the domain can be either transitive or periodic.

PyPDE

6 Chapter 2. Background

CHAPTER 3

Core Functionality

pypde.solvers.pde_solver (Q0, tf, L, F=None, B=None, S=None, boundaryTypes=’transitive’,
cfl=0.9, order=2, ndt=100, flux="rusanov’, stiff=True, nThreads=-1)

Solves PDEs of the following form:

oQ 0 0Q oQ s, 0Q 0Q 0Q
E+871F1 (Q78951"”78xn> +"'+@Fn (Q78xl"”78xn> JrBl(Q)aTClJF'“JFBn(Q)
or, more succinctly:

0Q

TP+ VF(QVQ)+B(Q)VQ=8(Q)

where Q, F;, S are vectors of n,,, variables and B; are matrices of shape (1yqr X Tyar). Of course, F, B, S

can be 0.

Define 2 = [0, L1] x - -+ x [0, L,,]. Given Q (x,0) for x € §, pde_solver finds Q (x,t) for any ¢ > 0.

Taking integers my,...,m, > 0 we split Q into (mq X - -+ X my,) cells with volume dxydxs . .. dx, where

L
dr; = p—r

Parameters
* Q0 (ndarray) — An array with shape (mq, ... My, Nyar).

Q0[il, i2, ..., in, 7J]isequalto:

) 0.5)d in, + 0.5) dx,
Qj+1<(21+) 5617“.’(2 +0.5) dx 70)

mi mny

* tf (double) - The final time at which to return the value of Q (x, t).

PyPDE

* L(ndarray or 1list)-— Anarrayoflengthn,L[1i] isequalto L; ;.

* F (callable, optional) — The flux terms, with signature ¥ (Q, DQ, d) —>
ndarray, corresponding to F 4,1 (Q, VQ).

If F has no VQ dependence, the signature may be ¥ (Q, d) -> ndarray, correspond-
ingto Fyi1 (Q).

If n = 1 and F has no VQ dependence, the signature may be F (Q) -> ndarray, cor-
responding to F; (Q).

— Qisa 1-D array with shape (144,)
- DQ s an 2-D array with shape (n, nyq4,) (as DQ[1] is equal to %)
— dis an integer (ranging from 0 ton — 1)

— the returned array has shape (7,4,)

* B(callable, optional)-The non-conservative terms, with signature B (Q, d) ->
ndarray, corresponding to By (Q).

If n = 1, the signature may be B (Q) —-> ndarray, corresponding to By (Q).

Qs a 1-D array with shape (14,)

d is an integer (ranging from 0 to n — 1)

the returned array has shape (nyqr, Nyar)

* S (callable, optional) — The source terms, with signature B(Q, d) —>
ndarray, corresponding to S (Q).

— Qisa 1-D array with shape (nyqr,)
— the returned array has shape (1.4,)
* boundaryTypes (string or list, optional)-—

— If a string, must be one of 'transitive', 'periodic’. In this case, all boundaries
will take the stated form.

— If a list, must have length n, containing strings taken from 'transitive',
'periodic'. In this case, the first element of the list describes the boundaries at
x1 = 0, L1, the second describes the boundaries at x5 = 0, Lo, etc.

e cfl (double, optional)-The CFL number: 0 < CFL < 1 (default 0.9).

* order (int, optional) — The order of the polynomial reconstructions used in the
solver, must be an integer greater than 0 (default 2)

* ndt (int, optional)— The number of timesteps at which to return the value of the
grid (default 100) e.g. if t£=5, and ndt=4 then the value of the grid will be returned at
t=1.25,2.5,3.75,5.

e flux (string, optional) — The kind of flux to use at cell boundaries (default
'rusanov') Must be one of 'rusanov', 'roe', 'osher"'.

e stiff (bool, optional) — Whether to use a stiff solver for the Discontinuous
Galerkin step (default True) If the equations are stiff (i.e. the source terms are much larger
than the other terms), then this is probably required to make the method converge. Other-
wise, it can be turned off to improve speed.

* nThreads (int, optional)- The number of threads to use in the solver (default -1).
If less than 1, the thread count will default to (number of cores) - 1.

8 Chapter 3. Core Functionality

PyPDE

Returns
out — An array with shape (ndt, my, ... my, Nyar)-

Deﬁningdt:%,thenout[i, i1, 12, ..., 1in, Jj] isequal to:

Qo ((21 +0.5) dxy . (in, +0.5) dz,, (i+1) dt)

mi My

Return type ndarray

PyPDE

10 Chapter 3. Core Functionality

CHAPTER 4

Example PDEs

The following PDE:s all have the form solvable by PyPDE:

S2LVF@QVQ)+B(Q)-VQ=8(Q)

4.1 3D Navier-Stokes

p PY;
pE pEv; + 35 - v
Q=] pu F; = pviv1 + i Bi=0 S=0
pu2 puive + iz
pU3 pUiv3 + X3

where:

2
S=pl—pu <Vv—|—VvT - 3t7’(Vv)I>

4.2 2D Reactive Euler

p P 0
pE (PE + p)vi 0
Q= | pu F, = | pvivi +dup B;=0 S= 0
pU2 pU;v2 + di2p 0
PA PUA —pAK (T)

where K is a (potentially large) function depending on temperature 7.

11

PyPDE

4.3 3D Godunov-Romenski

p
pE
pU1
P2
pU3
Aqy
Agg
Az
Agy
Az
Az
Az
Aso
Az

PU;
pEv, +%;-v
pUiv1 + i1
VU2 + i
pv;vz + X3
(51‘1A1 -V
digAy -
di3Ay -
di1Ag -
dioAg -
0i3Ag -
0i1Az -
0i2Az -
di3Asz -

< € < < <4< <<

where 0 is a (potentially very small) function of A, and now:

05

0-

B = v;ilh4 — 0;
03

¥ = pl + pAT

03
dinv1d3
dipv113
di3v113

OE

0A

03
010213
diov2l3
di3v2l3

03 05
OE

di1v3l3 S — 1 9A 1
Sioval - 9 OB

20343 01 A2

di3usls .

12

Chapter 4. Example PDEs

CHAPTER B

Example Code

See more examples here.

5.1 Reactive Euler (1D, hyperbolic, S0)

‘We must define our fluxes and source vector:

from numba import njit
from numpy import zeros

material constants

Qc =1
cv = 2.5
Ti = 0.25
KO = 250
gam = 1.4
@njit
def internal_energy(E, v, lam):
return E — (v[0]#%2 + v[1]**2 + v[2]*+x2) / 2 — Qc * (lam — 1)
def F(Q, d):
r = Q[0]
E =20[1] / r
v = Q[2:5] / r
lam = Q[5] / r
e = internal_energy(E, v, lam)
pressure
p = (gam — 1) » r x e

(continues on next page)

13

https://github.com/haranjackson/PyPDE/tree/master/pypde/tests

PyPDE

(continued from previous page)

F_ = v[d] = Q
F_[1] += P * v [d]
F_[2 +d] +=p

return F_
@njit
def reaction_rate(E, v, lam):

e = internal_energy(E, v, lam)
e / cv

i
Il

return KO if T > Ti else 0

def S(Q):
S_ = zeros (6)
r = Q[0]
E =0Q[1] / r
v = Q[2:5] / r
lam = Q[5] / r
S_[5] = -r » lam % reaction_rate(E, v, lam)
return S_

Under the Reactive Euler model, F'; has no VQ dependence, thus F here has call signature (Q, d). Note that any
functions called by F or S must be decorated with @nit, as must any functions that they subsequently call.

The numba library is used to compile F and S before solving the system. numba is able to compile some numpy
functions. As a general rule though, you should aim to write your functions in pure Python, with no classes. This is
guaranteed to compile. It will not produce the performance hit usually associated with Python loops and other features.

We now set out the initial conditions for the 1D detonation wave test. We use 400 cells, with a domain length of 1.
The test is run to a final time of 0.5.

from numpy import inner, array

def energy(r, p, v, lam):

return p / ((gam - 1) % r) + inner(v, v) / 2 + Qc * (lam - 1)

nx = 400

L = [1.]

tf = 0.5

rL = 1.4

pL = 1

vL = [0, 0, 0]

lamL = 0

EL = energy(rL, pL, vL, lamlL)

rR = 0.887565

pR = 0.191709

vR = [-0.57735, 0, 0]
lamR = 1

ER = energy(rR, pR, VR, lamR)

(continues on next page)

14 Chapter 5. Example Code

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

PyPDE

(continued from previous page)

QL = rL % array([l, EL] + vL + [lamL])
QR = rR * array([1l, ER] + vR + [lamR])

Q0 = zeros([nx, 61])
for i in range (nx):
if i / nx < 0.25:
Q0[i] = QL
else:
Q0 [1]

QR

We now solve the system. pde_solver returns an array out of shape 100 X nx x 6. out [] corresponds to the
domain at (j + 1) % through the simulation. We plot the final state of the domain for variable 0 (density):

import matplotlib.pyplot as plt
from pypde import pde_solver
out = pde_solver (Q0, tf, L, F=F, S=S, stiff=False, flux='roe', order=3)

plt.plot (out[-1, :, 01)
plt.show ()

The plot is found below, in accordance with accepted numerical results:

2.2 1
2.0
1.8

1.6 1

144 g

1.2 4

1.0 4

T T T T T T T T
0 50 100 150 200 250 300 350 400

5.2 Navier-Stokes (2D, parabolic)

‘We must define our fluxes and source vector:

from numba import njit
from numpy import dot, eye, zeros

material constants
gam = 1.4
mu = le-2

(continues on next page)

5.2. Navier-Stokes (2D, parabolic) 15

PyPDE

(continued from previous page)

@nijit
def sigma (dv) :
return mu » (dv + dv.T - 2 / 3 * (dv[0, 0] + dv[l, 1] + dv[2, 2]) * eye(3))

@njit
def pressure(r, E, v):
return r » (gam - 1) * (E - dot(v, v) / 2)

def F(Q, DQ, d):

F_ = zeros(5)
r = Q[0]
E =0Q[1l] / r

v = Q[2:5] / r

dr_dx = DQ[0, 0]
drv_dx = DQ[0, 2:5]
dv_dx = (drv_dx - dr_dx = v) / r

dv = zeros((3, 3))
dv([0] = dv_dx

p = pressure(r, E, v)
sig = sigma (dv)

vd = v[d]

rvd = r » vd

F_[0] = rvd

F_[1] = rvd » E + p » vd
F_[2:5] = rvd * Vv

F_[2 + d] += p

sigd = sig[d]
F_[1] —-= dot(sigd, v)
F_[2:5] —-= sigd

return F_

Under the Navier-Stokes model, F; has a VQ dependence, thus F here has call signature (Q, DQ, d). Note that
any functions called by F must be decorated with @nit, as must any functions that they subsequently call.

The numba library is used to compile F before solving the system. numba is able to compile some numpy functions.
As a general rule though, you should aim to write your functions in pure Python, with no classes. This is guaranteed
to compile. It will not produce the performance hit usually associated with Python loops and other features.

We now set out the initial conditions for the 2D Taylor-Green vortex test. We use 50x50 cells, with a domain length
of 27r. The test is run to a final time of 1.

from numpy import cos, pi, sin

def total_energy(r, p, Vv):

(continues on next page)

16 Chapter 5. Example Code

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

PyPDE

(continued from previous page)

return p / (r » (gam - 1)) + dot(v, v) / 2

def make_Q(r, p, V):

""" Returns the vector of conserved variables, given the primitive variables
mmn

Q[1l] = r = total_energy(r, p, V)
Q[2:5] = r » Vv
return Q

L [2 * pi, 2 % pi]
nx = 50

ny = 50

tf =1

C = 100 / gam

r 1

v zeros (3)

u zeros ([nx, ny, 5])

for i in range (nx):
for j in range(ny):

x = (1 + 0.5) = L[0] / nx

vy = (j + 0.5 « L[1] / ny

v[0] = sin(x) * cos(y)

v[l] = -cos(x) * sin(y)

p=C+ (cos(2 * x) + cos(2 = vy)) / 4
uli, j] = make_Q(r, p, V)

We now solve the system. pde_solver returns an array out of shape 100 X nxz X ny X 5. out [J] corresponds to
the domain at (j + 1) % through the simulation. We plot the final state of the domain for velocity:

import matplotlib.pyplot as plt
from numpy import linspace

from pypde import pde_solver

out = pde_solver (u,
tf,
LI
F=F,
cfl=0.9,
order=2,
boundaryTypes='periodic'")

x = linspace (0, L[0], nx)
y = linspace(0, L[1], ny)

ut = out[-1, :, :, 2] / out[-1, :, :, 0]
vt = out[-1, :, :, 31 / out[-1, :, :, O]
plt.streamplot (x, vy, ut, vt)

plt.show ()

5.2. Navier-Stokes (2D, parabolic) 17

PyPDE

6666666

NG

Chapter 5. Example Code

18

Index

P

pde_solver () (in module pypde.solvers), 7

19

	Installation
	From PyPI
	From source

	Background
	Core Functionality
	Example PDEs
	3D Navier-Stokes
	2D Reactive Euler
	3D Godunov-Romenski

	Example Code
	Reactive Euler (1D, hyperbolic, S≠0)
	Navier-Stokes (2D, parabolic)

	Index

